PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMI-LINEAR DEGENERATE PARABOLIC EQUATION
نویسندگان
چکیده
منابع مشابه
Pullback Attractors for Non-autonomous Parabolic Equations Involving Grushin Operators
Using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semilinear degenerate parabolic equation involving the Grushin operator in a bounded domain. We assume a polynomial type growth on the nonlinearity, and an exponential growth on the external force. The obtained results extend some existing results for non-autonomous reaction-diffusi...
متن کاملAttractors for a Non-linear Parabolic Equation Modelling Suspension Flows
In this paper we prove the existence of a global attractor with respect to the weak topology of a suitable Banach space for a parabolic scalar differential equation describing a non-Newtonian flow. More precisely, we study a model proposed by Hébraud and Lequeux for concentrated suspensions.
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملUpper Semicontinuity of Pullback Attractors for Non-autonomous Generalized 2d Parabolic Equations
This paper is concerned with a generalized 2D parabolic equation with a nonautonomous perturbation −∆ut + α ∆ut + μ∆ u+∇ · −→ F (u) +B(u, u) = ǫg(x, t). Under some proper assumptions on the external force term g, the upper semicontinuity of pullback attractors is proved. More precisely, it is shown that the pullback attractor {Aǫ(t)}t∈R of the equation with ǫ > 0 converges to the global attract...
متن کاملPullback attractors for non-autonomous reaction-diffusion equations in Lp
We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space Rn when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is established in L(R) and H(R), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2010
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089510000418